Construction of new completely regular q-ary codes from perfect q-ary codes
نویسندگان
چکیده
In this paper from q-ary perfect codes a new completely regular q-ary codes are constructed. In particular two new ternary completely regular codes are obtained from the ternary Golay [11,6,5] code and new families of q-ary completely regular codes are obtained from q-ary 1-perfect codes.
منابع مشابه
On new completely regular q-ary codes
In this paper from q-ary perfect codes new completely regular q-ary codes are constructed. In particular, two new ternary completely regular codes are obtained from ternary Golay [11, 6, 5] code. The first [11, 5, 6] code with covering radius ρ = 4 coincides with the dual Golay code and its intersection array is (22, 20, 18, 2, 1; 1, 2, 9, 20, 22) . The second [10, 5, 5] code, with covering rad...
متن کاملA generalized concatenation construction for q-ary 1-perfect codes
We consider perfect 1-error correcting codes over a finite field with q elements (briefly q-ary 1-perfect codes). In this paper, a generalized concatenation construction for q-ary 1-perfect codes is presented that allows us to construct q-ary 1-perfect codes of length (q − 1)nm + n +m from the given q-ary 1-perfect codes of length n = (q1 − 1)/(q − 1) and m = (q2 − 1)/(q − 1), where s1, s2 are ...
متن کاملNew completely regular q-ary codes based on Kronecker products
For any integer ρ ≥ 1 and for any prime power q, the explicit construction of a infinite family of completely regular (and completely transitive) q-ary codes with d = 3 and with covering radius ρ is given. The intersection array is also computed. Under the same conditions, the explicit construction of an infinite family of q-ary uniformly packed codes (in the wide sense) with covering radius ρ,...
متن کاملFull-Rank Perfect Codes over Finite Fields
In this paper, we propose a construction of fullrank q-ary 1-perfect codes over finite fields. This construction is a generalization of the Etzion and Vardy construction of fullrank binary 1-perfect codes (1994). Properties of i-components of q-ary Hamming codes are investigated and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1...
متن کاملOn non-full-rank perfect codes over finite fields
The paper deals with the perfect 1-error correcting codes over a finite field with q elements (briefly q-ary 1-perfect codes). We show that the orthogonal code to the q-ary non-full-rank 1-perfect code of length n = (q − 1)/(q − 1) is a q-ary constant-weight code with Hamming weight equals to qm−1 where m is any natural number not less than two. We derive necessary and sufficient conditions for...
متن کامل